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Outline Design Methods Space Exploration

Materials design and the philosopher’s stone?

I Render material’s properties
valuable through “alchemical”
changes

I Properties of matter defined
by composition

→ tune properties by variation of
matter, i.e. composition

≡ optimize properties in
“chemical space”
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What is chemical space?
Property hyper-space populated by all stable compounds
Nature 432 823 (2004)

Property? - observable!
Compound? -

→ Stoichiometry + phase space
within first principles picture

How large?
Chemical Abstracts Services
(ACS): ∃ ∼ 27 mio inorganic and
organic substances - vs.

estimated ∼ 1060 compounds!
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“electronic screening”

Alex Zunger (Renewable Energy
Lab) ’Inverse band-structure’

atomic configuration 
 band-structure (direct)

Nature 402 60 (1999)
Simulated annealing of binary
alloys for electronic properties

Jens Nørskov ’genetic algorithm + DFT’ → enthalpy of formation

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials



Outline Design Methods Space Exploration

“electronic screening”

Alex Zunger (Renewable Energy
Lab) ’Inverse band-structure’

atomic configuration 
 band-structure (direct)

Nature 402 60 (1999)
Simulated annealing of binary
alloys for electronic properties

Jens Nørskov ’genetic algorithm + DFT’ → enthalpy of formation

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials



Outline Design Methods Space Exploration

“electronic” design

OAvL ’Variational particle number’
[PRL 95 153002 (2005)]

I Weitao Yang (Duke University)
’Interpolating external potentials’
[JACS 128 3228 (2006)]
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Outline Design Methods Accuracy Multiscaling MGCE-DFT Application

The four grand challenges

In order to generally and reliably engineer materials for exhibiting
predefined macroscopic properties we need to

1 have sufficient accuracy in describing it
−→ Accuracy of KS-DFT

2 rigorously link microscopic to macroscopic properties
−→ Multiscaling

3 devise combining scheme
−→ accurate MGCE-DFT within multiscaling

4 Application to materials design −→ a Holy Grail (verbatim)

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials



Outline Design Methods Accuracy Multiscaling MGCE-DFT Application

Is there a problem with DFT?

I KS-DFT is exact, its parameterization is not

I Unlike post Hartree-Fock methods, accuracy difficult to converge

Perdew “Jacob’s ladder”
1st (LDA), 2nd (GGA), 3rd

(Meta-GGA), 4th (Hybrid), and
5th (non-local) rung
xc-potentials on Jacob’s ladder

I Problems with GGA: Spin, intermolecular energies, band-gap/excited
states (TDDFT)

Here Conditio sine qua non - accuracy must reflect right trends

I intermolecular interactions (bulk) and Fermi level (band-structure)
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Molecular crystal structure prediction

I Maddox [Nature 335 201
(1988)]: One of the
continuing scandals in the
physical sciences is that it
remains in general impossible
to predict the structure of
even the simplest crystalline
solids from a knowledge of
their chemical composition ...

I Dunitz (ETHZ) [PNAS 101
14309 (2004)]

I intermolecular potential?
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From repulsive to attractive intermolecular energies

Dispersion corrected atom centered potentials (DCACP) augmented KS-DFT

[OAvL et al. PRL 93 153004 (2004), PRB 71 195119 (2005)]
I parameterize for every atom (system, reference method, penalty)

I π-π stacking, rare-gases, hydrogen bonding
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From attractive intermolecular energies to bulk properties

Benzene crystal Three graphene sheets

⇒ accurate input for sampling of (1) symmetry, (2) number of molecules
per cell, (3) relative orientation

A Oganov (ETH Zürich, Moscow State University) [JCP 124 244704 (2006)]
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Further improvements and tests

Further

I Can we use atom centered corrections to the spin-ordering for
transition metals, lanthanides, actinides?

I Can we use Ann Mattson’s extension of LDA to electronic surfaces
[PRB 72 085108 (2005)]?

I Can we improve upon TDDFT?

Tests to assess and exploit

I Can we do metals, oxides, fluids, semiconductors equally well?

I How good are band-structures, defects, vacancies, adsorption,
cohesive energies, bulk modulus, vaporization enthalpies?

I Do we have an improved description of response to T and p vs.
composition, phase-diagrams, various thermodynamic conditions?

= direct impact on Sandia’s mission (Peter Feibelman, Ann Mattsson,
Peter Schultz)
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Why multiscaling?

ergodicity? resolution?
..
_

→ ‘Bridging Time and Length Scales in Materials Science and Bio-Physics’
Fall 2005, IPAM, UCLA
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How to link QM to MM to CG to CM︸ ︷︷ ︸?
FF

‘adaptive resolution’ [Matej Praprotnik, C Clementi, K Kremer PRE
(2007)]

=⇒ How do we control the details?Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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Further improvements and tests

Further

I QM/MM vs. QM/CG vs. QM/CM?

I Can we control boundary through value of µQM = µFF instead of
spatially fixed regions?
−→ “self-adaptive” & multiple fragmentation?

I Role of dissipation, reversibility, thermostats, integrators?

I MD or MC? Multiple timesteps?

Tests to assess and exploit

I Reactions in liquids, solids, or on surfaces?

I Nucleation of phase transformations?

= direct impact on Sandia’s mission (Paul Crozier, Gary Grest, Kevin
Leung, Susan Rempe)
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Variation of particles ⇒ grand canonical ensemble

canonical grand-canonical

molecular model molecular properties supra-molecular and λ-path
& processes

first principles model electronic properties supra-molecular & λ-path
& processes (reactions) ⇒ stoichiometry

space phase space phase & particle space

chemical space from first principles †

† Molecular grand-canonical ensemble DFT and exploration of chemical space
OAvL and M. E. Tuckerman, J Chem Phys 125 154104 (2006) MGCE-DFT

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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MGCE-DFT - a DFT for electrons and nuclei

Back to the basics, matter
consists of two particle
distributions of Ne electrons
and Np protons, where

R
drn(r) = Ne and

R
drZ(r) = Np

BUT still within
Born-Oppenheimer

So far, only for inclusion of nuclear quantum effects
-’non-Born-Oppenheimer’ [RG Parr et al. JCP 76 568 (1982)]
-Multi-Component DFT [EKU Gross et al. PRL 86 2984 (2001)]
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Chemical potentials - for variable particle distributions

Auxiliary variational functional with Lagrange multipliers µe and µn,

Ω = E[Z, n]−µe

( ∫
dr n(r)−Ne

)
−

∫
dr µn(r)

(
Z(r)−

∑
I NIδ(r−RI)

)

I Variation of Ω wrt n(r) yields Euler equation for electrons

⇒ µe = δE[n]
δn(r) = ∂E[n]

∂Ne

... electronegativity, εHO [Janak PRB 18 7165 (1978)]
I Variation of Ω wrt Z(r) yields Euler equation for nuclei

⇒ µn(r) = δE[Z,n]
δZ(r)

HF= V̄ESP(r)

... the electrostatic potential, µn(RI) - an alchemical potential
I Variational principle for property penalty,

⇒ P[Z, n] = (O[Z, n]−O0)2 ≥ 0

RMD ≡ min
{Z(r),Ne}

〈P[Z, n]〉

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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Example 1: intermolecular energies

δZ(r)|Np=Ne=10

Eint = Efa+s − Efa − Es

↪→ P[Z, n] = (Eint +∞)2

OAvL and ME Tuckerman J Chem
Theory Comput 3 1083 (2007)

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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Example 2: tuning εHO

consider Maxwell-relation,
δ2E

δZ(r)∂Ne
=

“
δµe

δZ(r)
≡ δεHO

δZ(r)

”
=

“
∂µn(r)

∂Ne
≡ ∂V̄ESP(r)

∂Ne

”
=: fm(r)

I Index of electronic response due to doping, ZI 7→ ZI + dZI

dεHO =
V̄ESP(RI , Ne + dNe)− V̄ESP(RI , Ne)

dNe
dZI

Molecular electronics collaboration with MPI for polymer research, Mainz

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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Example 3: drug discovery - inhibiting IAP

OAvL, R Lins, U Rothlisberger PRL 95 153002 (2005)

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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assembling the tools

Perform

min
{Ne,Z}

〈P[ĤQM/FF]〉ambient conditions

through sampling of chemical and phase space with

QM ≡ ĤQM/FF = ĤQM + V̂ FF
ESP + V̂ FF

vdW , ĤQM = MGCE-ĤKS

Multiscaling modular
→ “plug and play”

Entirely general
→ any property

The better initial guess
→ the faster converges P

Anatole Lilienfeld, Truman fellow Multiscale schemes for describing and engineering materials
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